Staged Deployment for LEO Personal Communication Systems

Introduction
This memo describes how to use the “Staged Deployment” interface we developed in MATLAB. Our simulator consists of different modules (represented by folders) that need to be used one by one. We present in this memo the basic role of each of the modules.
Reordering the simulator
To simplify the calculations, it is easier to consider families of architectures. In our case, a family of architecture is the set of all design vectors that have the same variables except for r and . Consequently, a reconfiguration will always involve two constellations of the same family since only r and  are modified. The module Reordering_Simulator has been created for this purpose. When staged deployment strategies are studied, the lifetime of the satellites is not a design variable anymore but a parameter. This module takes that into account and reduces the design space from 1800 architectures to 600 architectures. By default, the lifetime has been set to 15 years and still appears as a design variable in the design vectors but only for compatibility with the existing modules of the simulator. It doesn’t have any impact on the rest of the modules and the lifetime of the system considered is set differently.
To obtain the design space, you can either open the Reordering_Simulator module and run run_all_reorder.m or use the values stored in: Staged_Deployment/design_space.mat

Using the version3 of the simulator from May 2002, variables can be reordered by replacing run_all.m with run_all_reorder.m
The lifetime of the systems you want to consider needs to be changed. For that, set c.Tsat to the desired value in years.
Converting Capacity

We would like to change the way the capacity is measured. We would like to convert it to a maximum number of users. In the capacity module, open Gen_Capm.m. You need to define values for the average user activity level and the global system utilization. The default values we have given correspond to typical values. The vector Capm has been computed and the values are stored in Gen_capacity.mat. Capm can also be generated by the user running Gen_Capm.m.
Reconfiguration Information

To calculate the expenditures necessary for reconfiguration, we need to extract certain data concerning the constellations. We will store those data in a structure called I_all. As I_all is generated, the vectors IDC (Initial development cost) and OSC (Operations and maintenance) will be generated.
To generate I_all, go to the Reconfiguration_Data module and open the values stored in I_structure.mat or open enter run_I.m in the command window.
The essential information we need to know about reconfiguration is the costs associated to it. We would like to store all the reconfiguration costs in a transition matrix: deltac. This matrix can be obtained by opening the file DeltaC.mat or by running Gen_deltac.m. Use spy(deltac) to see the shape of the transition matrix. One of the main interests of the decomposition in families is that the transition is block diagonal.
Trade Space of fixed architectures and paths
We would like to obtain the trade space of fixed architectures with our new metric for capacity. For this, we need to calculate the different lifecycle costs of the architectures. Since they are discounted, a discount rate should be used. Name it dr and set it to the desired value (0.1 for 10%). In the cost module, use the function Gen_LCC.m to automatically generate the new vector of lifecycle costs. You can also open the file gen_lcc.mat. This vector is constructed with different assumptions because all the development costs are considered to be on the first year. It is important to generate it to compare results.
The Trade Space can be easily plotted by going in the Paths module and typing Tradespace in the command window. To see the members of the family of a certain architecture Y presented in a tree, type: Tree(x_all,Y,Capm,LCC) or Tree(x_all,x_all(i),Capm,LCC) if you want to represent the architecture with index i. where(x_all,x_all(i),Capm,LCC)can be used to find a particular architecture in the Trade Space.
A path of architectures is represented as a vector in our codes. To plot a particular path of architecture (it may be feasible or not), type: plotpath([index1 index2 … indexn],Capm,LCC). It can be convenient to find the index of a particular architecture Y. for this, type: index=finder(x_all,Y).
Particular functions can be used to plot the feasible leaving an architecture. Type plotfullpath(index,x_all,Capm,LCC) to have the feasible paths leaving this architecture and the matrix Ta representing the architectures that can be obtained from this architecture respecting the evolution rules we defined (r and epsilon can only be increased). The first line of Ta gives the capacity, the second the index of the architecture, the third the altitude and the last the elevation angle. The function fullpath.m returns in a matrix all the paths leaving a certain architecture. From an architecture, the maximum number of paths that leaves it can reach 416 paths.
Representation of Demand
We represent demand with a binomial tree. We need to set certain parameters of the binomial tree, in particular sigma (volatility) and mu (expected rate of return). For this, go to the demand module. Open Gen_D.m. We define the different parameters in a structure we call D. See the different parameters and set them as you want. Default values are proposed that corresponds to 5 decision points over the lifetime of the system, a volatility of 40%, an expected return of 5%, a system designed to have up to 3 million customers but that can provide service to at least 50000 users. Be careful, the number of decision points should be a divider of the total lifetime of the system (for instance 3 or 5 decision points can be used for fifteen years). Once the parameters are set, generate D typing Gen_D. from D, we need to plot all the possible demand scenarios and gather them in a matrix demand. Each scenario has a probability that should be stored in a vector P. Type [S,demand,P]=binotree(D) to obtain the matrix and the vector. To plot the binomial tree associated, type: plotbino(D,demand).
Optimization

Now that we can generate paths, that we know the different costs and that the demand scenarios are generated, we can try to find the optimal path for our problem. Go to the optimization module. Type go and the optimization will automatically be launched.
To avoid going through all those steps and still have the values of the parameters for the choice of constants we did, open full_parameters.mat in the root folder, go to the optimization module and type go.

The function returns the best paths identified, their expected costs, the best fixed architecture (traditional design) and its cost and finally it gives the percentage of money saved. Everything is summarized in a chart. With our values, the percentage of money saved is 40% because the targeted number of users of 3 million customers is rarely reached by demand scenarios. This corresponds to what happened with the Iridium constellations.
